
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 19,439-455 (1994)

FULLY COUPLED FINITE VOLUME SOLUTIONS OF THE

EQUATIONS USING AN INEXACT NEWTON METHOD
INCOMPRESSIBLE NAVIER-STOKES AND ENERGY

PAUL R. McHUGH AND DANA A. KNOLL
Computational Fluid Dynamics Unit, Idaho National Engineering Laboratory, EG&G Idaho, Inc.,

Idaho Falls, ID 83415-3895, U.S.A.

SUMMARY

An inexact Newton method is used to solve the steady, incompressible Navier-Stokes and energy equations.
Finite volume differencing is employed on a staggered grid using the power law scheme of Patankar.
Natural convection in an enclosed cavity is studied as the model problem. Two conjugate-gradient-like
algorithms based upon the Lannos biorthogonalization procedure are used to solve the linear systems
arising on each Newton iteration. The first conjugate-gradient-like algorithm is the transpose-free
quasi-minimal residual algorithm (TFQMR) and the second is the conjugate gradients squared algorithm
(CGS). Incomplete lower-upper (ILU) factorization of the Jacobian matrix is used as a right preconditioner.
The performance of the Newton-TFQMR algorithm is studied with regard to different choices for the
TFQMR convergence criteria and the amount of fill-in allowed in the ILU factorization. Performance
data are compared with results using the Newton-CGS algorithm and previous results using LINPACK
banded Gaussian elimination (direct-Newton). The inexact Newton algorithms were found to be CPU
competetive with the direct-Newton algorithm for the model problem considered. Among the inexact
Newton algorithms, Newton-CGS outperformed Newton-TFQMR with regard to CPU time but was less
robust because of the sometimes erratic CGS convergence behaviour.

KEY WORDS Incompressible Navier-Stokes Newton’s method Conjugate gradient

1. INTRODUCTION

The use of robust, fully implicit algorithms to solve the Navier-Stokes equations has grown in
popularity in both finite element and finite volume applications owing to the rapid advances in
computer speed and available memory. lP9 Direct matrix solution methods are commonly used,
employing either a banded solver or the frontal method.” Research by the finite volume
community has demonstrated the robustness of fully implicit methods compared with the more
common segregated solution procedures such as SIMPLE.’ ’ This improved robustness is due
to the implicit treatment of the velocity-pressure-temperature coupling.

The main drawback of direct Newton methods is the large memory required to factor the
Jacobian matrix. This drawback has been countered with advances in sparse matrix iterative
solution algorithms. Specifically, the development of efficient conjugate-gradient-like algorithms
for the solution of non-symmetric, non-positive definite linear system^'^*'^ has enabled the
implementation of ‘in-core’, multidimensional, fully implicit Newton method solutions for the
Navier-Stokes and energy equations. Since the use of an iterative solver does not require the
exact solution of the linear system, the resulting algorithm has been labelled ‘inexact’ Newton

This feature is advantageous in the sense that the tolerance of the linear equation

CCC 027 1-209 1/94/170439-17
0 1994 by John Wiley & Sons, Ltd.

Received 13 May 1993
Revised 29 December 1993

440 P. R. McHUGH AND D. A. KNOLL

solve can be relaxed when far from the true solution and tightened as the true true solution is
approached.

'Out-of-core' matrix solvers such as the frontal method can also be used to handle large
Jacobian matrices that exceed available 'in-core' memory. Only a limited number of matrix
entries (contributing to the active 'frontal matrix') must be stored in core memory, yet partial
or full pivoting is possible in the frontal Einset and Jensen found that despite the
advantages of the frontal method, there is a break-even point in front width above which iterative
solutions become more effi~ient.~ Their preconditioned iterative method outperformed the
frontal method in their tests when the frontal width exceeded approximately 500. These results
as well as those of other researchers16 have encouraged us to focus on the performance of
'in-core' conjugate-gradient-like iterative algorithms.

True conjugate gradient methods compute approximations to x in the affine space xo + K,,
where K, is the Krylov subspace of dimension m." They are characterized by an optimality
condition and economical or short vector recurrences." Note that for symmetric matrices short
vector recurrence relationships arise naturally, resulting in constant work and storage require-
ments on each iteration. For non-symmetric matrices, however, short recursions do not exist l 9

and so the work and storage requirements increase with the iteration number; making the use
of true conjugate gradient methods impractical for large problems.

In the case of non-symmetric matrices some problems allow successful application of true
conjugate gradient algorithms to the normal equations (i.e. A'Ax = A'b).' Disadvantages in
this approach, however, are that the condition number of the new system is made much worse
and matrix-vector multiplications with A' are required. Working with A' is undesirable for
several reasons:20 first, the transpose is not always readily available; second, the efficiency of
matrix-vector multiplications with the transpose may be reduced on vector/parallel computers;
and third, working with the transpose eliminates the option of matrix-free implementations of
Newton's m e t h ~ d . ~ ' - ~ ~ For these reasons we chose to concentrate on the performance of
conjugate-gradient-like algorithms.

Conjugate-gradient-like methods are derived by either relaxing the optimality condition or
sacrificing economical vector recursion^.^^ The optimality condition may be relaxed by allowing
periodic algorithm restarts and artificially truncating the recursion (i.e. the new direction vector
is orthogonal to only the previous s direction vectors). Economical vector recursions can also
be obtained at the expense of optimality by using the non-symmetric Lanczos biorthogonaliza-
tion procedure (i.e. using three-term recursions to build a pair of biorthogonal bases).24

This investigation considers algorithms derived using the non-symmetric Lanczos procedure.
Compared with Arnoldi-based methods (i.e. GMRES25), these Lanczos-based methods typically
require less work and storage per iteration. The first of the Lanczos-based methods developed
was the biconjugate gradient (BCG) algorithm, which requires matrix-vector multiplications
with the matrix transpose.26v27 This shortcoming was overcome with the development of CGS,
a variant of BCG that avoids the use of the matrix transpose. CGS doubles the rate of
convergence of BCG, but unfortunately it also doubles the rate of divergence. Since CGS lacks
a minimization property, it sometimes exhibit very erratic convergence behaviour. In order to
obtain more smoothly convergent CGS-like solutions, Freund applied the quasi-minimal residual
idea to the CGS algorithm (TFQMR).29 Note that both CGS and TFQMR may encounter
algorithm breakdown, although in our experience these occurrences appear to be infrequent in
practice. The look-ahead Lanczos procedure has been used in other algorithms to avoid these
breakdowns, but they once again require working with the matrix t r a n s p ~ s e . ' ~ , ~ ~ . ~ '

In this study two inexact Newton algorithms are used to solve the incompressible Navier-
Stokes and energy equations. The first is formed using the TFQMR algorithm (Newton-

INEXACT NEWTON METHOD SOLUTION OF NAVIER-STOKES EQUATIONS 44 1

TFQMR) and the second uses the CGS algorithm (Newton-CGS). The important features of
these algorithms are discussed further in Section 2, while performance results obtained in solving
the well-known problem of natural convection in an enclosed cavity3' are presented in Section
3. The latter section demonstrates the significant memory advantages possible with the use of
iterative solvers in contrast with the use of LINPACK banded Gaussian elimination (direct-
Newton). Two parameter studies are also included in Section 3. The first investigates varying
the inner iteration convergence criteria and the second investigates increasing the level of fill-in
used in the ILU preconditioner. Based on the results of these parameter studies, the two inexact
Newton algorithms are benchmarked against the direct-Newton algorithm. Additionally, the
relative merits of both the Newton-CGS and Newton-TFQMR algorithms are studied and
compared. Conclusions and important observations are summarized in Section 4.

2. NUMERICAL SOLUTION ALGORITHM

This section describes the important features of the inexact Newton algorithms. These features
include the use of a numerical Jacobian evaluation to simplify implementation and the use of
mesh sequencing to extend the radius of convergence of the algorithm. In addition, important
points regarding the use of conjugate-gradient-like algorithms within an inexact Newton
iteration are discussed.

2.1. Newton's method

Newton's method is a robust technique for solving systems of non-linear equations of the
form

where the state variable x can be expressed as

x = [XI, X',. . .) X,]? (2)

Application of Newton's method requires the solution of the linear system

J"6x" = -F(x"), (3)

where the elements of the Jacobian J are defined by

J~~ = a j p x j (4)

x"" = x"+ d6x". (5)

and the new solution approximation is obtained from

The constant d (0 < d < 1) in equation (5) is sometimes used to damp the Newton updates. The
damping strategy is designed to prevent the calculation of non-physical variable values (i.e.
negative temperature) and to scale large variable updates when the solution is far from the true
solution. Damping was not necessary to obtain the solutions presented Section 3. This iteration
is continued until the norm of 6x and/or the norm of F(x) are below some suitable tolerance
level. This convergence criterion is discussed further in Section 2.5.

We note that for problems where forming and factoring the Jacobian matrix account for a
significant fraction of the CPU time, successful use of a modified Newton iteration can lead to

442 P. R. McHUGH AND D. A. KNOLL

substantial CPU time savings.’ Implementation of a modified Newton iteration with a direct
linear equation solver is straightforward and efficient, but CPU savings can also be realized
with iterative solvers by freezing the Jacobian and preconditioning matrices for several Newton
steps within an inexact Newton iteration. In this study, however, the focus is on the performance
of the inexact Newton iteration. An investigation of the benefits of using a modified Newton
iteration with an iterative linear equation solver will be deferred to a later study. Thus the
performance of our inexact Newton algorithm will be benchmarked against a full Newton
iteration using LINPACK banded Gaussian elimination.

2.2. Numerical Jacobian

The elements of the Jacobian in equation (4) are evaluated numerically using finite difference
approximations,

where

Axj = ax j+ b (7)

and a and b are small perturbation constant^.'*^^^^

but requires only a small fraction of the total CPU time per iteration.”’
We use an algorithm that maintains much of the flexibility of a standard numerical Jacobian

2.3. Mesh sequencing

Mesh sequencing is used to obtain an initial guess on the final grid that lies within the
radius of convergence of Newton’s method. Mesh sequencing is analogous to the first upward
cycle of a full multigrid (FMG) a l g ~ r i t h m . ~ ~ We use third-order Lagrangian interpolation to
move through a series of uniform grids that are generated from the previous grid by doubling
the grid dimension in both directions. Thus the interpolated solution from the previous grid is
used as the initial guess on the new grid. The improved efficiency resulting from the use of mesh
sequencing will be demonstrated in Section 3.

2.4. Iterative linear equation solver

The desire to extend our original research to fine, two-dimensional grids and to three-
dimensional grids motivated the switch from a banded Gaussian elimination solver to a
preconditioned conjugate-gradient-like algorithm for the solution of equation (3). The use of
banded Gaussian elimination in solving these types of problems can be extremely costly, in terms
of both CPU time and memory requirements, owing to large matrix bandwidths. To avoid these
problems, the CGS and TFQMR algorithms have been implemented to take advantage of the
sparse, banded structure of the Jacobian matrix.

In order to accelerate the convergence of the TFQMR algorithm, we currently use right
preconditioning. The right-preconditioned TFQMR algorithm29 is presented below for comple-
teness, where P, represents the inverse of the preconditioning matrix and the algorithm is
designed to solve the system Ax = b. A listing of the CGS algorithm is omitted here, but note
that TFQMR is an extension of the CGS algorithm. For additional information regarding the
development of these algorithms see References 28 and 29. In the listing below, keep in mind

INEXACT NEWTON METHOD SOLUTION OF NAVIER-STOKES EQUATIONS 443

that within the inexact Newton algorithm, A = J, x = 6x and b = -F(x"). All other variables
are defined within the TFQMR listing.

I. Initialize
1. Choose x,.
2. Set

qo = p- = do = 0, v, = 'lo = n = 0; ,.CGS , = - r o = b - Ax,,
P-1 = 1, T~ = IIrgGSII (1 1 11 denotes Euclidean norm).

11. For n = 0, 1 ,2 , . . . , d o :
1. Set

pn = fir:GS, P n = P n I P n - 1 9 un = rFGs + Bnqn;

Pn = un + BAS, + B n P n - 1 1 9

q n + 1 = Un - %Vn,

Vn = A(Pr)Pn 9

Vn = an(PrKun + q n + 1)-

on = ? i V n , an = P n f t J n ;

rCGS - CGS -
n + l - r n Avn.

2. For m = 2n + 1,2n + 2 do:

1

2
Vm- 1Vm- 1

an
d m = Ym + 4 - 1 ;

un ifmisodd
Y m = { qn ifmiseven

x m = xm- 1 + Vm(Pr)dm;

continue until x, has converged.

In this study P, is the inverse of an incomplete lower-upper (ILU(k)) factorization of the
Jacobian m a t r i ~ . ~ ' - ~ * A m odified 'level of fill-in' idea is used to determine non-zero locations
in the LU factors. This is accomplished by initializing the level of all original non-zero elements
in the Jacobian matrix to zero. Then fill-in terms arising from the elimination of a k-level term
are set to level k + l .37 In our implementation, however, we take advantage of the banded
structure of our Jacobian matrix and store only non-zero diagonals. This means that if a fill-in
term is not located in one of the stored diagonals, an additional matrix diagonal must be added
to the diagonal set in order to include this fill-in term. We recognize that more compact storage
schemes would eliminate this additional fill-in.39-41 However, for the simple test problem in this
study the memory advantages of these schemes did not warrant sacrificing the convenience of
the diagonal storage scheme.

Since P, = (LU)- ', where LU represents the incomplete factorization of J, one can see that
products of the form (P,)v are calculated using simple forwardfbackward solves. Additionally,
since P, is an approximate inverse of J, it can be used to obtain an initial guess for the solution
of the linear system (i.e. by setting 6xo = -P,F(xo)).

One of the difficulties in solving the primitive variable form of the incompressible Navier--
Stokes equations is that pressure does not explicitly appear in the continuity equation. Thus, if
the continuity equation is solved for pressure, a zero will appear on the main diagonal in all

444 P. R . McHUGH A N D D. A. K N O L L

the rows in the Jacobian matrix representing the continuity equation. This difficulty is overcome
by a direct solver with efficient pivoting, but pivoting may not be practical when using a sparse
matrix iterative solver. Alternatives to pivoting include adding non-zeros to the diagonal using
some sort of penalty function2*'6 and realigning the equations and variables to avoid zeros on
the main diagonal.6 In the case of an iterative solver using ILU preconditioning, fill-in resulting
from the incomplete factorization will generate non-zero terms in most of these zero diagonal
rows. However, Chin et al.' pointed out that for a natural ordering (i.e. 'uupT') there will be
no fill-in on the continuity equation row if the finite volume lies adjacent to a corner boundary
such that the bottom and left face coincide with the boundary. They further note that if there
is only one such cell, the difficulty can be removed by arbitrarily fixing the pressure in that cell.
However, problems arise when more than one such cell exists in the computational grid.

Chin et al. chose to investigate clever alternative ordering strategies to solve this problem.'
An alternative technique, which avoids the additional complexity caused by variable reordering,
is the use of Kershaw's method for treating unstable pivots in incomplete LU factorization^.^^
This method allows near-zero pivots to be adjusted in such a way that the incomplete
factorization algorithm is kept stable and the error associated with the pivot adjustment is
minirni~ed.~' One advantage in this approach is that very small pivots, which may cause
algorithm instability, are adjusted along with the hard zero pivots. We have observed the benefit
of this feature elsewhere in solving the equations governing the incompressible flow over a
backward-facing step.'

In the case of the natural convection problem, however, only one such 'problem' cell exists
(lower left corner). Thus the difficulty is overcome by simply fixing the pressure to a constant
value in that cell, which is justified for this model problem and the incompressible flow
a s ~ u m p t i o n . ~ ~

2.5. Inexact Newton method

One advantage in coupling an iterative linear equation solver with Newton's method is
that the linear system can be solved less accurately during the initial Newton iterations when
far from the true solution and more accurately as the true solution is approached. This is in
contrast with the use of a direct solver, which requires the same amount of work whether one
is close to the true solution or not.

We adopt an inner iteration convergence criterion similar to that proposed by Averick and
Ortega14 and Dembo et al. l 5 Specifically, the inner TFQMR iteration is assumed converged
when

where the superscript on RI refers to the inner iteration and the subscript indicates the
dependence on the Newton iteration. The selection of the best value of y,, is highly empirical.
In Section 3.3.2 we investigate two options for setting yn. The first is to set y,, to a constant value
and the second is to let y,, vary on each Newton iteration."

This inner iteration convergence criterion is used with a limit on the maximum number of
inner iterations. In our numerical experiments we have set this upper limit equal to 200. We
will demonstrate that in situations where this upper limit is encountered frequently, the selected
iterative algorithm should not display erratic convergence behaviour such as that exhibited by
BCG26*27 and CGS.'*

INEXACT NEWTON METHOD SOLUTION OF NAVIER-STOKES EQUATIONS 445

The convergence criterion for the outer Newton iteration is based upon a relative update
defined by

where the superscript on R: refers to the outer Newton iteration and the subscript indicates the
dependence on the Newton iteration. Convergence is then assumed when

R; c 1 x (10)
This means that six digits of accuracy are required when the magnitude of the state variable is
greater than one, and six decimal places of accuracy are required when the magnitude of the
state variable is less than one.

3. RESULTS

3.1. Natural convection problem description

The geometry for the natural convection model problem is displayed in Figure 1. Using
the Boussinesq appro~imation,4~ the governing equations for the natural convection problem
in dimensionless and conservative form can be expressed as

continuity
au av
ax a y -+ -=o ,

momentum
a U 2 auv a p a2u a Z U

ax ay ax ax2 ay2’
-+ -=- -+-+-

auv av2 a p aZv a2y
ax ay ay ax* a y 2
- + - = - - + ~ + - + GrT,

arlay = 0 y t u = v = o

I

/ 1’: T = O

u = v = o

/

ariay = o
u = v = o

X

Figure 1. Geometry for natural convection model problem

446 P. R. McHUGH AND D. A. KNOLL

Table 1. Comparison of algorithm memory requirements using direct versus iterative linear equation solvers
(in megawords)

Iterative solver
Direct

Grid solver ILU(0) IUU) ILU(2) ILU(3)

15 x 15 0.1 74 0.0342 0.0414 0.0558 0.077
30 x 30 1.343 0.1368 0.166 0.2232 0.3 1
6 0 x 6 0 1056 0.547 0.662 0.8928 1.24

120 x 120 83.69 2.189 2.65 3.57 4.95

energy

auT avT 1 a2T a2T ax+% =F&+v). (14)

where Gr is the Grashof number, Pr is the Prandtl number and the Rayleigh number Ra is given
by Ra = Gr Pr. The gravity vector is assumed pointing in the negative y-direction. Boundary
conditions for this problem are specified in Figure 1.

3.2. Memory requirements

Our inexact Newton method uses conjugate-gradient-like algorithms to solve equation (3).
Since these algorithms are well suited for sparse matrix applications, significant reductions in
computer memory requirements are possible. Table I demonstrates this memory advantage
for the natural convection problem, comparing the preconditioned TFQMR algorithm with
LINPACK banded Gaussian elimination. The direct solve data represent the memory required
to store the Jacobian matrix, while the iterative solve data represent the memory required to
store the Jacobian matrix and the ILU preconditioner. Four different levels of fill-in are
considered for the ILU preconditioner. Table I shows that the potential memory advantage
increases with grid refinement. For the 60 x 60 grid the memory required for the direct solve
is roughly an order of magnitude larger than that required for the iterative solve. For the coarsest
grid listed, the direct solve memory requirement is a factor of two larger than the iterative solve
with ILU(3) preconditioning and a factor of five larger with ILU(0) preconditioning. Note that
all computations were run on a CRAY X-MP/216 with 16 megawords of memory. Thus the
60 x 60 grid was the finest allowable grid for calculations with the direct solver.

3.3. Algorithm performance

In this section the performance of the inexact Newton method algorithm is benchmarked
against a direct Newton iteration using LINPACK banded Gaussian elimination. The perfor-
mance of the inexact Newton method using ILU-preconditioned TFQMR is studied with respect
to the inexact Newton convergence parameter (y n) , the level of fill-in used in the ILU(k)
preconditioner and the use of mesh sequencing. In addition, the performance of the algorithm
using TFQMR is compared with the performance obtained using the CGS algorithm. Note that
the TFQMR algorithm provides an upper bound for the residual norm that was not used in
this study. Use of this upper bound could make the TFQMR algorithm less expensive, because
the calculation of the residual norm could be postponed until this upper bound was small enough.

INEXACT NEWTON METHOD SOLUTION OF NAVIER-STOKES EQUATIONS 447

Table 11. Performance data using LINPACK banded Gaussian elimination for
Ra = lo4

Grid
Newton iterations

(4 CPU time (s)

15 x 15 7
30 x 30 7
60 x 60 7

15 x 15 > 30 x 30 > 60 x 60 7, 4, 4

3.52
30.72

262.82
172.9

3.3.1. Direct Newton iteration results. Performance data using LINPACK banded Gaussian
elimination are presented in Table I1 for Ra = lo4. The required number of Newton iterations
(n) as well as the required CPU time are listed for three different mesh sizes. The last row
represents data using mesh sequencing. In this case the required number of iterations on each
grid is listed in the second column. Table I1 shows that the required CPU time increases
significantly as the grid dimensions are doubled in both directions. Note also that the use of
mesh sequencing reduced the required CPU time by roughly 34%. Mesh sequencing enables
this saving by providing a better initial guess on the finest grid. This results in fewer iterations
when the CPU cost per iteration is high. For this problem the CPU cost of a single iteration
on the finest grid was equivalent to approximately 75 iterations on the coarest grid. This
behaviour is consistent with previous results' where CPU savings of approximately 45% were
observed. Differences between these results and those of Reference 1 are due to the use of different
convergence criteria.

3.3.2. Convergence parameter y,,. The efficiency of an inexact Newton iteration is closely tied
to the proper selection of y,,. If y,, is chosen too small, needless extra work will be performed
when the Newton iteration is not within the radius of convergence of the algorithm. Conversely,
if y,, is chosen too large, the convergence of the Newton iteration will be slow. Here we investigate
two options for setting y,,. The first is to set y,, to a constant value and the second is to let y,,
vary on each Newton iteration using an expression similar to that proposed in Reference 22.
Table 111 demonstrates the effect of varying y,, on algorithm performance. The results presented
in Table 111 were obtained for Ra = lo4 on a 60 x 60 grid starting from a flat initial guess
(u = v = 0, T = 0.5) using ILU(2)-preconditioned TFQMR to solve equation (3). The expression

Table 111. Effect of varying yn on algorithm performance
(60 x 60 grid, flat initial guess)

Y. n m CPU time (s)

10-4 7 62 568.8
1 0 - 3 8 51 536.6
10-2 9 38 4744
10-1 1 1 25 408.76
2 24 12 545.9
(;)Minim 10) 9 32 403.8
(+)Mintn. 101 8 40 441.7

I -

448 P. R. McHUGH AND D. A. KNOLL

104

103

102

101

1 0 - 1

1 0 - 2

10-3

1 0 - 4

1 0 - 5

1 0 - 6

1 0 - 7

10 -8

- le-1 - le-2
100 - le-3

0 2 4 6 8 10 12 14 16 18 20 22 24

n
Figure 2. Effect of y. on algorithm convergence

used for Y,,, the required number of Newton iterations (n), the average TFQMR iterations per
Newton iteration (m) and the total CPU time are given. The results suggest that y,, < is
too restrictive during the initial Newton iterations. Conversely, y,, > 10- was not sufficiently
restrictive when the Newton iteration was close to the true solution, resulting in a large number
of required Newton iterations. The best overall results were obtained using y,, = (f)Min(n* lo).
For this selection y n initially assumes the value o f f and is reduced with the Newton iteration
number until it reaches a minimum value of the order of 10-j. Thus yn becomes more
restrictive as the true solution is approached. The effect of varying y,, on the algorithm
convergence behaviour is shown in Figure 2. Observe that y,, = 0.5 results in slow convergence,
while reduced 7,-values yield much faster (superlinear) convergence. Another important observa-
tion is that y,, = (f)Mintn* lo), although large initially, still produces very favourable convergence
behaviour. Similar performance was observed for coarser grids and other levels of ILU fill-in.

Analogous results obtained using mesh sequencing are shown in Table TV, where a 60 x 60

Table IV. Effect of varying y,, on algorithm performance

Y. n m CPU time (s)

10-4 7, 4 , 4 10, 18, 50 321.7
1 0 - 3 7, 4, 4 8, 16, 45 2754
1 0 - 2 8, 5, 5 6, 12, 34 272.8
10-1 9, 7, 8 3, 7, 20 293.9

(f)Mintn. 101 7, 7, 8 5, 7, 31 390.5
(:)Min(n. 10) 7, 6, 6 6, 12, 33 32 1.7

INEXACT NEWTON METHOD SOLUTION OF NAVIER-STOKES EQUATIONS 449

Table V. Effect of higher levels of ILU fill-in on algorithm performance (flat initial guess on each grid)

15 x 15 grid 30 x 30 grid 60 x 60 grid

k n m t n m t n m t

0 8 11 3.96 9 37 47.5 1 9 121 563.6*
1 8 5 4.95 9 16 46.98 8 60 521.6
2 7 5 6.23 8 1 1 40.54 9 32 403.8
3 9 6 14.63 8 13 70.76 9 26 487.3

* Indicates the TFQMR iteration limit of 200 was encountered.

grid solution for Ra = lo4 was obtained using a 15 x 15 and 30 x 30 grid sequence. In this case
values for n and m are presented for each grid. A comparison of Tables 111 and IV again
demonstrates the benefits of mesh sequencing. For example, using y,, = lop3, mesh sequencing
enabled a CPU time saving of approximately 42%. Table IV also suggests that when using mesh
sequencing, a more restrictive convergence criterion is needed during the initial Newton iterations
in order to take advantage of the improved initial guesses on the finer grids. The adaptive
convergence selections did not work as well with mesh sequencing. In fact, a constant value of
y,, = lo-’ yielded the best overall results. The potential saving using y,, = (f)Min(n*lo) on the initial
grid is not warranted, because the CPU cost of the initial grid solution is typically a small
fraction of the cost of the total calculation.

is advisable when a good initial guess is available. However, when a good initial guess is not
available, the adaptive convergence criterion of y,, = ($)Min(n* lo) appears the best overall selection.

Based on the results presented in Tables 111 and IV, it appears that the selection of y,, =

3.3.3. Efect of fill-in using ILU(k) preconditioning. Effective preconditioning is essential in
improving the robustness of the TFQMR iteration. One measure of an effective preconditioner
is how well it approximates the system matrix. For an incomplete LU factorization, allowing
more fill-in will most likely improve this approximation. The drawback, however, is higher CPU
and memory storage cost. This suggests an optimal level of fill-in that balances CPU time and
memory considerations against preconditioner effectiveness. Table V demonstrates the effect of
different levels of fill-in (k) versus grid size for Ra = lo4. Listed for each grid are the required
number of Newton iterations (n), the average TFQMR iterations per Newton iteration (m) and
the total CPU time (t). The solution on each grid was obtained from a flat initial guess (u = u = 0,
T = 0.5). Although the use of k > 0 on the 15 x 15 grid reduced the average TFQMR iterations,
the total CPU time actually increased. For the 30 x 30 grid a small reduction in CPU time was
observed using ILU(1) and ILU(2). On the 60 x 60 grid the benefits of k > 0 became more
significant. ILU(2) preconditioning reduced the average TFQMR iterations by a factor of four
and the total CPU time by approximately 30% compared with ILU(0) preconditioning. Note
that the CPU performance of ILU(3) was poor on the coarser grids and was not as efficient as
ILU(2) on the 60 x 60 grid. For this problem, use of ILU(2) preconditioning provides a good
compromise between CPU time and memory considerations and preconditioner effectiveness.

3.3.4. TFQMR performance benchmark. This subsection is intended to benchmark the
performance of the inexact Newton algorithm using the TFQMR algorithmz9 against the use
of the CGS algorithm.” In addition, the performance of the inexact Newton iteration is

450 P. R . McHUGH AND D. A. KNOLL

Table VI. Comparison of CPU performance of two inexact Newton algorithms and the direct-
Newton algorithm (flat initial guess on each grid)

CPU time (s)

Direct- Newton- Newton-
Grid Newton TFQMR CGS RTFQMR RCGS

15 x 15 3.52 3.96 2.25 1.125 0.64
30 x 30 30.12 40.54 28.3 1.32 0.92
60 x 60 262.82 403.76 221.54 1.54 0.84

compared with a direct Newton iteration using LINPACK banded Gaussian elimination.
Table VI compares the CPU performance of these different algorithms versus grid size for
Ra = lo4. The inexact Newton algorithms use ILU(0) on the coarsest grid and ILU(2) on the
two finer grids. y,, = lo) is used as the inner iteration convergence criterion. The last two
columns of Table VI present ratios of the required CPU time using the iterative solvers to the
required CPU time using the direct solver. Thus RTFQMR represents the ratio of total CPU time
using the Newton-TFQMR algorithm to the total CPU time using the direct-Newton algorithm.
Similarly, R,,, represents the ratio of total CPU time using the Newton-CGS algorithm, to the
total CPU time, using the direct-Newton algorithm. The results indicate that the Newton-CGS
algorithm was more efficient than both the direct-Newton and Newton-TFQMR algorithms.
The Newton-TFQMR algorithm was less efficient than the direct Newton iteration, but still
competitive. For both inexact Newton algorithms, forward-backward solve operations asso-
ciated with the ILU preconditioning dominated the CPU time. Our implementation of the CGS
algorithm requires three of these operations per iteration, while the TFQMR algorithm requires
five such operations. In addition, the TFQMR algorithm performs three more vector additions
per iteration than the CGS algorithm. These differences roughly account for the increased CPU
times observed for the TFQMR algorithm, since the iteration counts for the two algorithms
were similar. As noted previously, the TFQMR algorithm could be made more efficient by
making use of the available upper bound for the residual norm.

The reduced CPU efficiency of TFQMR compared with CGS is compensated with improved
robustness. Recall from the discussion in Section 1 that CGS displays rather erratic convergence
behaviour. In Section 2.4 we alluded to the potential problems that may arise when this erratic
convergence behaviour is encountered within an inexact Newton iteration. In fact, if ILU(0)
preconditioning is used to solve a higher-Ra problem (Ra = 10’) on a 60 x 60 grid with
y,, = the Newton-CGS algorithm fails after only the second Newton iteration, while the
Newton-TFQMR algorithm converges after 13 Newton iterations. The cause of the Newton-
CGS failure is the erratic convergence behaviour of the CGS algorithm, which has been observed
elsewhere.12*28 Recall from Section 2.4 that we impose an upper limit on the number of inner
iterations equal to 200. On the second Newton iteration both the CGS and TFQMR algorithms
encountered this upper limit. While the erratic convergence behaviour of CGS returned a very
poor approximate solution to equation (3), the TFQMR algorithm returned an acceptable
solution that allowed the eventual convergence of the algorithm. This behaviour illustrated in
Figures 3 and 4, which show the convergence behaviour of both CGS and TFQMR during the
first and second Newton iterations. Figure 3 shows that both algorithms converged to the desired
tolerance on the first Newton iteration, although the convergence of the CGS algorithm is very
erratic. Note how the TFQMR algorithm successfully controls and smooths the erratic CGS

INEXACT NEWTON METHOD SOLUTION OF NAVIER-STOKES EQUATIONS

0 5 0 100 150 200

Inner Iteration Number

Figure 3. Convergence comparison between TFQMR and CGS on first Newton iteration

103

102

' 10'

100

10-1

R:,

TFQMR (n=2)
CGS (n-2)-

45 I

0 5 0 100 150 200

Inner Iteration Number

Figure 4. Convergence comparison between TFQMR and CGS on second Newton iteration

452 P. R . McHUGH A N D D. A. K N O L L

Table VII. Comparison with benchmark solution of De Vahl DavisJ2
~~

Current solution

15 x 15 30 x 30 60 x 60 120 x 120
Benchmark

solution

urnax 22.7859 22.663 22.738 22.784 22.788
Y 0.177 0.167 0.183 0.175 0.179
urnax 27.6296 27.599 27.657 27.594 27640
X 0.88 1 0.900 0.883 0.875 0.879

convergence behaviour. Figure 4 shows that during the second Newton iteration neither
algorithm converged to the desired tolerance after 200 iterations. The CGS algorithm terminated
with Ri approximately equal to 45. This means that the residual norm of the linear system
(equation (3)) was 45 times larger than if the Newton update was assumed zero. This poor update
resulted in the failure of the algorithm on the subsequent Newton iteration. The TFQMR
algorithm, on the other hand, terminated with RI approximately equal to 0.043, which
represented an acceptable approximate solution to equation (3).

This behaviour might be avoided in some instances by using better preconditioning to improve
the convergence behaviour of the iterative algorithms. However, this option may not always be
feasible owing to memory limitations or to the lack of a better-known preconditioner. For this
reason we feel that the advantage of robustness associated with the use of TFQMR is more
important than the slight CPU efficiency advantage obtained with CGS.

3.4. Solutions

The solutions to the natural convection problem for Ra = lo4 are compared with the
benchmark solution of De Vahl Davis3* in Table VII. Note that the velocity data from Reference
32 were multiplied by the factor P i to account for the different choices in scaling. Additionally,
the positions were adjusted to account for the reversed circulation direction in Reference 32.
Table VII presents the maximum horizontal velocity component (u) and its corresponding
y-location along the line x = 0.5, and the maximum vertical velocity component (u) and its
x-location along the line y = 05. Data from four different grids of increasing refinement are
compared with the benchmark solution of Reference 32. Table VII shows the improved
agreement with the benchmark solution as the grid is refined. The agreement between the
benchmark solution and the 120 x 120 grid solution is very good.

4. CONCLUSIONS

Fully implicit inexact Newton algorithms were used to solve the well-known natural convection
model problem governed by the steady, incompressible Navier-Stokes and energy equations.
An efficiently evaluated numerical Jacobian was used to simplify implementation and mesh
sequencing was used to improve robustness and CPU efficiency. The TFQMR and CGS iterative
algorithms are used to form the inexact Newton algorithms. Right ILU(k) preconditioning was
used to improve the performance of the iterative solvers. The inexact Newton algorithms were
found to be CPU competitive with a direct Newton iteration using LINPACK banded Gaussian

INEXACT NEWTON METHOD SOLUTION OF NAVIER-STOKES EQUATIONS 453

elimination, yet significantly more efficient from a memory standpoint. In certain circumstances
the Newton-TFQMR algorithm was shown to be more robust than the Newton-CGS algorithm.

The inexact Newton algorithm allows less work in solving the linear systems during the initial
Newton iterations when far from the true solution, but requires more accurate solutions as the
true solution is approached. We investigated several choices for the convergence parameter yn
which controls this behaviour. Among these choices, yn = (f)Min{n*lo) was the best choice when a
good initial guess was not available, but y n = worked best overall when a good initial
guess was available.

Effective preconditioning is an essential ingredient in the successful use of conjugate-gradient-
like algorithms. Thus in the case of ILU(k) preconditioning we tried to determine the optimal
level of fill-in that balances CPU efficiency with preconditioner effectiveness. We found that
ILU(2) preconditioning provided a good compromise between CPU efficiency, memory con-
siderations and preconditioner effectiveness for moderately refined grids. For coarse grids (i.e.
15 x 15) we found that ILU(0) preconditioning was sufficient.

In the future we plan to investigate matrix-free implementations of the inexact Newton method
using several combinations of preconditioners and conjugate-gradient-like algorithms.20-22 With
regard to the incompressible Navier-Stokes equations, we hope to investigate the effect of solving
a pressure equation in place of the continuity equation in order to avoid zeros on the main
diagonal of the Jacobian matrix. Additionally, the effects of using higher-order differencing and
body-fitted co-ordinates on algorithm performance will also be considered.

ACKNOWLEDGEMENTS

This work is supported through the EG&G Idaho Long Term Research Initiative in Computa-
tional Mechanics under DOE Idaho Field Office Contract DE-AC07-76ID01570. The authors
would like to acknowledge the careful reading and valuable suggestions made by the referees.

APPENDIX: NOMENCLATURE

a
b
d
F
GY
J
k
m
n
Nu
Pr
Ra
U
U
X

SX

Ax
X

perturbation constant
perturbation constant
damping constant
governing equation vector
Grashof number
Jacobian matrix
level of fill-in in ILU preconditioner
inner iteration counter
Newton iteration counter
Nusselt number
Prandtl number, v/a
Rayleigh number
dimensionless principal velocity, ii/ii
dimensionless transverse velocity, ij/u
state variable vector
update vector
perturbation in j th component of state vector
principal co-ordinate variable

454 P. R . McHUGH AND D. A. KNOLL

Ax grid spacing in x-direction
y transverse co-ordinate variable
Ay grid spacing in y-direction

Greek letters

a thermal diffusivity
y

v kinematic viscosity

tolerance for iterative linear equation solver
time step control constant

Subscript

n Newton iteration number

Superscripts

i inner iteration
n Newton iteration number
0 outer iteration

Operators

[IT transpose of []
(1 - (1 Euclidean norm
I1 * I1 m L - n o r m

REFERENCES

I . D. A. Knoll and P. R. McHugh, ‘A fully implicit direct Newton solver for the Navier-Stokes equations’, Inf. J .

2. 0. C. Zienkiewicz, The Finite Element Method, 3rd edn, McGraw-Hill, London, 1977.
3. E. 0. Einset and K. F. Jensen, ‘A finite element solution of three-dimensional mixed convection gas flows in

horizontal channels using preconditioned iterative matrix methods’, Inr. J. Numer. Methods Fluids, 14, 817-841
(1992).

4. 0. Dahl and S. 0. Wille, ‘An ILU preconditioner with coupled node fill-in for iterative solution of the mixed finite
element formulation of the 2D and 3D Navier-Stokes equations’, Int. J. Numer. Methods Fluidr, 15,525-544 (1992).

5. J. W. MacArthur and S. V. Patankar, ‘Robust semidirect finite difference methods for solving the Navier-Stokes
and energy equations’, Int. J . Numer. Methods Fluids, 9, 325-340 (1989).

6. S. P. Vanka, ‘Block-implicit calculation of steady turbulent recirculating flows’, In!. J . Heat Mass Transfer, 28,

7. V. Venkatakrishnan, ‘Viscous computations using a direct solver’, Comput. Fluids, 18, 191-204 (1990).
8. P. R. McHugh and D. A. Knoll, ‘Fully implicit solution of the benchmark backward facing step problem using

finite volume differencing and inexact Newton’s method’, HTD, Vol. 222, pp. 77-87, Proc. ASME Winter Annual
Meeting, Anaheim, CA, November 1992, ASME, New York, 1992.

9. P. Chin, E. F. DAzevedo, P. A. Forsyth and W.-P. Tang, ‘Preconditioned conjugate gradient methods for the
incompressible Navier-Stokes equations’, Int. J . Numer. Methods Fluids, 15, 273-295 (1992).

Numer. Methods Fluids, 17, 449461 (1993).

2093-2103 (1985).

10. P. Hood, ‘Frontal solution program for unsymmetric matrices’, Int. J. Numer. Methods Eng., 10. 379-399 (1976).
11. S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere, New York, 1980.
12. R. W. Freund, G. H. Golub and N. Nachtigal, ‘Iterative solution of linear systems’, Numerical Analysis Project,

13. C. H. Tong, ‘A comparative study of preconditioned Lanczos methods for nonsymmetric linear systems’, Sandia

14. B. M. Averick and J. M. Ortega, ‘Solutions of nonlinear Poisson-type equations’, Appl. Numer. Math., 8, 443455

15. R. S. Dembo, S. C. Eisenstat and T. Steihaug,’lnexact Newton methods’, SIAM J. Numer. Anal., 19,400408 (1982).

Manuscript NA-91-05. Computer Science Department, Stanford University, 1991.

National Laboratories Rep. SAND91-8240, UC-404, 1992.

(1991).

INEXACT NEWTON METHOD SOLUTION OF NAVIER-STOKES EQUATIONS 455

16. M. P. Reddy et a/ . , 'Penalty finite element analysis of incompressible flows using element by element solution

17. Y. Saad and M. H. Schultz, 'Conjugate gradient-like algorithms for solving nonsymmetric linear systems', Math.

18. S . F. Ashby, T. A. Manteuffel and P. E. Saylor, 'A taxonomy for conjugate gradient methods', SIAM J. Numer.

19. V. Faber and T. Manteuffel, 'Necessary and sufficient conditions for the existence of a conjugate gradient method',

20. A. Ern, V. Giovangigli, D. E. Keyes and D. Smooke, 'Towards polyalgorithmic linear system solvers for nonlinear

21. C. W. Gear and Y. Saad, 'Iterative solution of linear equations in ODE codes', SIAM J. Sci. Stat. Comput., 4,

22. P. N. Brown and A. C. Hindmarsh, 'Matrix-free methods for stiff systems of ODES', SIAM J. Numer. Anal., 23,

23. P. N. Brown and Y. Saad, 'Hybrid Krylov methods for nonlinear systems of equations', SIAM J. Sci. Stat. Comput.,

24. S . Ashby, T. Manteuffel and P. Saylor, Preconditioned Polynomial Iterative Methods, a Tutorial, University of

25. Y. Saad and M. H. Schultz, 'GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear

26. C. Lanczos, 'Solution of systems of linear equations by minimized iterations', J. Res. NBS, 49, 33-53 (1952).
27. R. Fletcher, 'Conjugate gradient methods for indefinite systems', in G. A. Watson (ed.), Lecture Notes in Mathematics,

Vol. 506, Proc. Dundee Conf on Numerical Analysis. Dundee, 1975, Springer, Berlin, 1976, pp. 73-89.
28. P. Sonneveld, 'CGS, a fast Lanczos-type solver for nonsymmetric linear systems', SIAM J. Sci. Star. Comput., 7 ,

856869 (1986).
29. R. W. Freund, 'A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems', SIAM J. Sci.

Comput., 14, 470-482 (1993).
30. R. W. Freund and N. M. Nachtigal, 'QMR: a quasi-minimal residual method for non-Hermitian linear systems',

IPS Res. Rep. 91-05. Interdisciplinary Project Center for Supercomputing, ETH-Zentrum, Zurich, 1991.
31. R. W. Freund, M. H. Gutknecht and N. M. Nachtigal, 'An implementation of the look-ahead Lanczos algorithm

for non-Hermitian matrices', Tech. Rep. 9 / 0 9 , RIACS, NASA Ames Research Center, Moffett Field. CA, 1991.
32. G. De Vahl Davis, 'Natural convection of air in a square cavity: a benchmark numerical solution', In!. J. Numer.

Methods Fluids, 3, 249-264 (1983).
33. M. D. Smooke. 'Solution of burner-stabilized premixed laminar flames by boundary value methods', J. Comput.

34. A. Brandt, 'Multigrid techniques: 1984 guide with applications to fluid dynamics', Tech. Rep., von Karman Institute,

35. J. A. Meijerink and H. A. van der Vorst, 'An iterative solution method for linear systems of which the coefficient

36. J. A. Meijerink and H. A. van der Vorst, 'Guidelines for the usage of incomplete decompositions in solving sets of

37. J. W. Watts, 'A conjugate gradient-truncated direct method for the iterative solution of the reservoir simulation

38. M. Sangback and A. T. Chronopoulos, 'Implementation of iterative methods for large sparse nonsymmetric linear

39. Y. Saad, 'SPARSKIT, a basic tool kit for sparse matrix computations', RIACS Tech. Rep. 90.20, May, 1990.
40. E. Anderson and Y. Saad, 'Solving sparse triangular linear systems on parallel computers', Int. J. High Speed

41. M. A. Heroux, Phuong Vu and Chao Yang, 'A parallel preconditioned conjugate gradient package for solving sparse

42. D. S. Kershaw, 'On the problem of unstable pivots in the incomplete LU-conjugate gradient method', J. Comput.

43. P. M. Gresho, 'Some current CFD issues relevant to the incompressible Navier-Stokes equations', Comput. Methods

44. L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd edn, Vol. 6, 1987, Pergamon Press, Elmsford, New York,

algorithms', Comput. Methods Appl. Mech. Eng., 100, 169-205 (1992).

Comput., 44. 41 7 4 2 4 (1985).

Anal., 27, 1542- 1568 (1 990).

SIAM J. Numer. Anal., 21, 352 (1984).

elliptic problems', SIAM J. Sci. Cornput., 681-703 (1994).

583401 (1983).

610-638 (1986).

11, 450-481 (1990).

Colorado at Denver, April 1992.

systems', SIAM J. Sci. Stat. Comput., 7 , 856 (1986).

Phys., 48. 72-105 (1982).

1984.

matrix is a symmetric M-matrix', Math. Comput., 31, 148-162 (1977).

linear equations as they occur in practical problems', J. Comput. Phys., 44, 134155 (1981).

pressure equation', SOC. Petrol Eng. J . , 21, 345-353 (1981).

systems on a parallel vector machine', Int. J. Supercomput. Appl., 4, 9-24 (1990).

Comput.. 1, 73-95 (1989).

linjear systems on a CRAY Y-MP', Appl. Numer. Math.. 8, 93-115 (1991).

Phys.. 38, 114-123 (1980).

Appl. Mech. Eng., 87, 201-252 (1991).

pp. 217-221.

